Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
نویسندگان
چکیده
Let dμα,β(x) = (1−x)(1+x)dx, α, β > −1, be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev inner product
منابع مشابه
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Non-discrete Jacobi-sobolev Inner Product
Let {Q n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product ⟨f, g⟩ = ∫ 1 −1 f(x)g(x)dμα,β(x) + λ ∫ 1 −1 f (x)g(x)dμα+1,β(x) where λ > 0 and dμα,β(x) = (1− x)α(1 + x)βdx with α > −1, β > −1. In this paper we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials {Q n (x)}n. Necessary conditions for ...
متن کاملResearch Article A Cohen-Type Inequality for Jacobi-Sobolev Expansions
Let μ be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev-type inner product 〈 f ,g〉 = ∫ 1 −1 f (x)g(x)dμ(x) + M f (1)g(1) + N f ′(1)g′(1), where M,N ≥ 0. In this paper we prove a Cohen-type inequality for the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product. We follow Dreseler and Soardi (1982) and Marke...
متن کاملAsymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
Inner products of the type 〈f, g〉S = 〈f, g〉ψ0 + 〈f ′, g〉ψ1, where one of the measures ψ0 or ψ1 is the measure associated with the Jacobi polynomials, are usually referred to as Jacobi-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Jacobi-Sobolev inner products. The inner products are such that the associated pair...
متن کاملGeneralized trace formula and asymptotics of the averaged Turan determinant for polynomials orthogonal with a discrete Sobolev inner product
Let be a finite positive Borel measure supported on [−1, 1] and introduce the discrete Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f (x)g(x) d (x)+ K ∑ k=1 Nk ∑ i=0 Mk,if (ak)g (ak), where the mass points ak belong to [−1, 1], and Mk,i > 0(i = 0, 1, . . . , Nk). In this paper, we obtain generalized trace formula and asymptotics of the averagedTuran determinant for the Sobolev-type orthogonal pol...
متن کاملAsymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 170 شماره
صفحات -
تاریخ انتشار 2013