Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality

نویسندگان

  • Bujar Xh. Fejzullahu
  • Francisco Marcellán
  • Juan J. Moreno-Balcázar
چکیده

Let dμα,β(x) = (1−x)(1+x)dx, α, β > −1, be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev inner product

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Non-discrete Jacobi-sobolev Inner Product

Let {Q n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product ⟨f, g⟩ = ∫ 1 −1 f(x)g(x)dμα,β(x) + λ ∫ 1 −1 f (x)g(x)dμα+1,β(x) where λ > 0 and dμα,β(x) = (1− x)α(1 + x)βdx with α > −1, β > −1. In this paper we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials {Q n (x)}n. Necessary conditions for ...

متن کامل

Research Article A Cohen-Type Inequality for Jacobi-Sobolev Expansions

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev-type inner product 〈 f ,g〉 = ∫ 1 −1 f (x)g(x)dμ(x) + M f (1)g(1) + N f ′(1)g′(1), where M,N ≥ 0. In this paper we prove a Cohen-type inequality for the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product. We follow Dreseler and Soardi (1982) and Marke...

متن کامل

Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures

Inner products of the type 〈f, g〉S = 〈f, g〉ψ0 + 〈f ′, g〉ψ1, where one of the measures ψ0 or ψ1 is the measure associated with the Jacobi polynomials, are usually referred to as Jacobi-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Jacobi-Sobolev inner products. The inner products are such that the associated pair...

متن کامل

Generalized trace formula and asymptotics of the averaged Turan determinant for polynomials orthogonal with a discrete Sobolev inner product

Let be a finite positive Borel measure supported on [−1, 1] and introduce the discrete Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f (x)g(x) d (x)+ K ∑ k=1 Nk ∑ i=0 Mk,if (ak)g (ak), where the mass points ak belong to [−1, 1], and Mk,i > 0(i = 0, 1, . . . , Nk). In this paper, we obtain generalized trace formula and asymptotics of the averagedTuran determinant for the Sobolev-type orthogonal pol...

متن کامل

Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials

In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2013